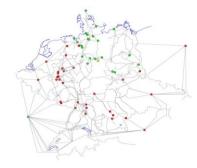
Energy System Analysis Associates

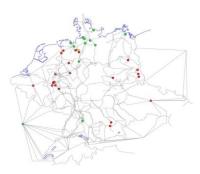
ELMOD - Electricity Market Model

Model purpose

- Analysis of market design issues
- Influence of renewable energy sources (RES) on the European transmission grid
- Congestion management
- Load flow analysis


Main characteristics

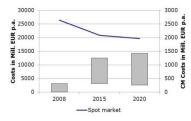
- Bottom-up electricity market model
- DC load flow based transmission grid model
- Temporal resolution up to 72 h (representative hours)
- Scenario-based series of wind and PV feed-in for characteristic hours


Exemplary Results:

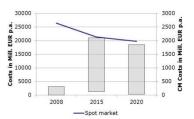
Congestion Management in Germany The Impact of Renewable Generation on Congestion Management Costs (Kunz 2011)

Without grid extension and topology optimizing

With grid extension



not sufficient to ease all network congestion


· National congestion management is

- Even topology optimisation cannot completely eliminate the need for redispatching power plants
- Congestion management costs will increase up to 2020
- Integration of higher RES shares and proposed power plant investments reduce system dispatch costs, but increase the need for congestion management

Without grid extension

With grid extension and nuclear phase-out

 Change of market design and congestion management regime results in benefits and reduces the need for transmission expansion

Exemplary References

Kunz, Friedrich (2011): "Congestion Management in Germany-The Impact of Renewable Generation on Congestion Management Costs.", appears in the Energy Journal or download as Working Paper (WP-EM-46) at www.ee2.biz.

Leuthold, Florian; Weigt, Hannes; Hirschhausen, Christian: A Large-Scale Spatial Optimization Model of the European Electricity Market, Journal of Network and Spatial Economics, 2010.

Weigt, Hannes; Jeske, Till; Leuthold, Florian; von Hirschhausen, Christian: Take the long way down - Integration of large-scale North Sea wind using HVDC transmission, Energy Policy, Vol. 38, Issue 7, July 2010, Pages 3164-3173.